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1. Introduction

Hierarchically structured data are commonly encountered in many flelds of scientiflc investiga-
tion. In educational assessment studies, for example, students’ performance in mathematics is mea-
sured in various schools. Such data are called hierarchically structured because students are nested
within schools. Another example of hierarchically structured data arise in repeated measurement
designs where some attributes of subjects are repeatedly measured over time.

Hierarchical (multilevel) linear models (HLM: Bock, 1989; Bryk and Raudenbush, 1992; Gold-
stein, 1987; Hox, 1995) are often used to analyze such data, explicitly taking into account the hierar-
chical nature of the data. Interpretations of parameters in such models, however, become increasingly
more di–cult as they accommodate more levels, more predictor variables, and more criterion vari-
ables. This paper presents a method of multilevel analysis with a dimension reduction feature to
facilitate interpretations of model parameters. The proposed method is a multivariate extension of
the procedure developed by Takane and Hunter (2002). The method flrst decomposes variability in
the criterion variables into several orthogonal components using predictor variables at difierent levels,
and then applies singular value decomposition (SVD) to the decomposed parts to flnd more parsimo-
nious representations. An example is given to illustrate the method. Some possible extensions of the
proposed method are also suggested.

2. The Model

For illustration, let us consider the following situation. (This situation closely resembles the
example given later.) Suppose we are interested in assessing what attributes (factors) of students
and their environments afiect their performance in mathematics. For this, we measure students’
performance in mathematics. We may use multiple tests to obtain reliable test scores and to capture
all important aspects of math performance. Students (the flrst-level units) are usually nested within
schools (the second-level units). We also collect relevant information about the students and schools
they belong to.

We may ask several questions in this context: 1. How much of the students’ math performance
can or cannot be explained by school difierences. The former is referred to as the between-school
efiects, and the latter as the within-school efiects. 2. How much of the between-school efiects can
be explained by known school characteristics (the school-level predictor variables) and in what way
do the school-level predictor variables afiect student performance? 3. How much of the within-school
efiects can be explained by prescribed subject characteristics (the subject-level predictor variables),
and in what way do the subject-level predictor variables afiect student performance? 4. Are there
any interactions between the school-level and student-level predictor variables that afiect student
performance? HLM allows us to investigate and answer all of these questions.





student-level predictor variables.) The flfth term represents the portion of the within-school efiects
that can be explained by the interactions between the school-level and student-level predictor variables.
(The matrix DX∗W ∗

1 represents the interactions between the two.) The sixth term pertains to the
portion of the interactions between schools and the student-level predictor variables that cannot be
explained by the fourth and flfth terms. Finally, the last term in the model represents residuals left
unaccounted for by any systematic efiects in the model.

There are several important special cases of the full model presented above. When no school-
level predictor variables exist, neither terms 2 and 3 nor terms 5 and 6 can be isolated. In this case,
the model reduces to a simple analysis of covariance model. When no student-level predictor variables
exist, terms 4, 5, 6, and 7 cannot be isolated. When neither the school-level nor student-level predictor
variables exist, neither terms 2 and 3 nor terms 4, 5, 6, and 7 can be isolated. In this case, we simply
have a one-way ANOVA model.

3. Estimation

The seven terms in model (10) are all columnwise orthogonal and so coe–cients in each term



Putting the estimates of parameters given above into (10), we obtain the following (orthogonal)
decomposition of Y :

Y = P 1N Y + P GW ∗
0
Y + P GA∗Y(22)

+ P X∗Y + P DX∗W ∗
1
Y + P DX∗B∗Y + QDX∗QGY ;

where in general P Z = Z(Z ′Z)−1Z ′ is the orthogonal projector onto Sp(Z), A∗ = Q[1J ;W ∗
0 ]=G′G,

and B∗ = Q[Jr;W ∗
1 ]=DXX

. This decomposition of Y entails a more generic decomposition of EN , the
N -dimensional Euclidean space, which is split into the orthogonal direct-sum of the seven subspaces
spanned by the orthogonal projectors preceding Y ’s in (22). This generic decomposition is depicted
in the following table.

Table 1. The decomposition of EN = Sp(IN ).

(1) P 1N (2)





Criterion referenced NELS-equated proflciency scores were calculated in the form of probabilities
based on a cluster of items that mark certain proflciency levels. There are flve levels of proflciency
in math which are hierarchically ordered in the sense that mastery of a higher level typically implies
proflciency at the lower levels. The NELS-equated proflciency probabilities were computed using IRT-
estimated item parameters calibrated in NELS: 88. We use the flve proflciency probabilities as our
criterion variables. Each proflciency probability represents the probability that a student would pass
a given proflciency level. Proflciency at level 1 corresponds to simple arithmetical operations on whole
numbers. Level 2 pertains to simple operations with decimals, fractions, powers, and roots. Level 3
represents simple problem solving, requiring the understanding of low level mathematical concepts.
Level 4 pertains to understanding of intermediate level mathematical concepts and/or multi-step
solutions to word problems. Level 5 concerns complex multi-step word problems and/or advanced
mathematics material.

We eliminated students with missing data from our analysis. We also eliminated schools with
fewer than 20 students in the data set. This left us with N = 10; 939 students nested within J = 562
schools. The school-level predictor variables used are given in Table 3. Each of the statements was
rated on a 5-point scale with respect to how accurate the statement was as a description of the school
(1. not accurate at all to 5. very accurate). The student-level predictor variables used are shown in
Table 4. There were three categorical variables. They were coded into 8 dummy variables altogether
prior to the analysis.

Table 2 gives a breakdown of the total SS (SST ) explained by the difierent terms in model (10).

Table 2. A breakdown of the total SS.

Between-School SS (SSB) Within-School SS (SSW )
17.9% 82.1%

SS2 SS3 SS4



Table 3. The efiects of school-level predictor variables.

Variables Component weights (T )
Teachers press students to achieve .69
Teachers’ morale is high -.00
Students expected to do homework .42

We next look at the efiects of student-level predictor variables, which are summarized in Table
4. We estimated C10 in (10) and then applied GSVD. Singular values were found to be .33, .08, .01,
.01, and .00, so the flrst component again accounted for a majority (over 97%) of the SS4. It may be
observed that male students did slightly better than female students. There are larger race difierences
among the three racial groups. White students performed better than black and Hispanic students.
(Again, recall that only 2.3% of the SST can be accounted for by SS4.) Contrary to people’s common
sense, hours spent on homework had relatively small efiects on students’ mathematical proflciency. A
moderate amount of time spent on homework has a small positive efiect, while no hours or too many
hours have small negative efiects. Covariances between this component and the criterion variables
(component loadings) were .12, .18, .19, .15, .04, so again the component seems to represent students’
overall performance in mathematics.

Table 4. The efiects of student-level predictors.

Variables Categories Component weights (T )
1.Gender male .28

female -.28
2. Race Black -1.90

Hispanic .18
White 1.71

3. Homework 0 hours -.13
1-4 hours .28
5 or more hours -.15

6. Discussion and Future Work

In this paper, we proposed a method for multilevel redundancy analysis. This method is par-
ticularly attractive since OLS estimates of regression parameters can be obtained in closed form.
The estimated regression parameters are then subjected to rank reduction by GSVD. Reduced-rank
approximations of regression parameters are useful, particularly when the dimensionality of the pa-
rameter space is high. An application of the proposed method was empirically demonstrated through
a real example.

There are a number of possible extensions that can make the proposed method even more useful:
1. Although only the two-level model has been discussed in this paper, similar methods can be de-
veloped for higher-level multivariate data. The number of terms in the model, however, grows very
quickly. For example, a full three-level HLM with predictor variables at all levels, there are 15 terms
altogether.
2. Bootstrap (e.g., Efron, 1982) or other resampling techniques could be used to assess the stability
of individual parameters, which may in turn be used to test their signiflcance. Since the normality
assumption is almost always in suspect in survey data, the bootstrap methods may also be useful to
benchmark the distribution of the conventional statistics used in HLM.
3. The number of components to be retained in dimension reduction may be determined by permuta-
tion tests in a manner similar to Takane and Hwang (2002), who developed a permutation procedure



for testing the number of signiflcant canonical correlations.
4. Additional (linear) constraints can be readily incorporated in the OLS estimation procedure. This
allows the statistical tests of the hypotheses represented by the constraints.
5. When the U parameters are assumed to be random rather than flxed, observations obtained from
subjects in the same schools are no longer statistically independent. The dependence structure among
the observations may be estimated from the initial estimates of parameters (obtained under the inde-
pendence assumption), which may then be used to re-estimate the parameters, and so on. This leads
to an iterative estimation procedure for full maximum likelihood estimation (MLE) of parameters
(Goldstein, 1987). A simpler method called REML (REstricted Maximum Likelihood: e.g., LaMotte,
2007) may also be of interest in this context.
6. The ridge type of regularized LS (RLS) estimation may be used instead of OLS. The RLS is easy
to apply and is known to provide estimates of regression parameters which are on average closer to
population parameters (Takane and Hwang, 2007; Takane and Jung, 2008).
7. Interesting special cases arise when we set Y = Q1N

X = ~X and or Y = DX∗ . The former leads
to

~X = P G
~X + QG

~X = P GW ∗
0

~X + P GA∗ ~X + QG
~X;(31)

and the latter to

DX∗ = P X∗DX∗ + P DX∗QJr=DXX
DX∗ = P X∗DX∗ + P DX∗W ∗

1
DX∗ + P DX∗B∗DX∗ ;(32)

where A∗ and B∗ were introduced shortly after (22) above Table 1. The SVD of terms in these
decompositions may be called multilevel PCAs (Principal Component Analyses).

7. References

Bock, R. D. (1989). Multilevel Analysis of Educational Data. San Diego, CA: Academic Press.
Bryk, A. S., and Raudenbush, S. W. (1992). Hierarchical Linear Models. Newbury Park, CA: Sage Publica-

tions.
Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: SIAM.

Goldstein, H. I. (1987) Multilevel Models in Educational and Social Research. London: Oxford University
Press.

Hox, J. J. (1995). Applied Multilevel Analysis. Amsterdam: TT-Publikaties.
Ingels, S. J., Planty, M., and Bozick, R. (2005). A Proflle of the American High School Senior in 2004: A First

Look-Initial Results from the First Follow-up of the Education Longitudinal Study of 2002 (ELS:2002)
(NCES 2006348). U.S. Department of Education, National Center for Education Statistics. Washington,
DC: U.S. Government Printing O–ce.

LaMotte, L. R. (2007). A direct derivation of the REML likelihood function. Statistical Papers, 48, 321{327.
Takane, Y., and Hunter, M. A. (2002). Dimension reduction in hierarchical linear models. In S. Nishisato,

Y. Baba, H. Bozdogan, and K. Kanefuji (Eds.), Measurement and Multivariate Analysis (pp. 145{154).
Tokyo: Springer Verlag.

Takane, Y., and Hwang, H. (2002). Generalized constrained canonical correlation analysis. Multivariate
Behavioral Research, 37, 163{195.

Takane, Y., and Hwang, H. (2007). Regularized linear and kernel redundancy analysis. Computational Statis-
tics and Data Analysis, 52, 394{405.

Takane, Y., and Jung, S. (2008). Regularized partial and/or constrained redundancy analysis. Psychometrika,
73, 671{690.

Van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for canonical correlation analysis.
Psychometrika, 42, 207{219.


