Monojet search for new phenomena with the ATLAS detector

James D Pearce

CAP Congress 2013, Montreal, QC

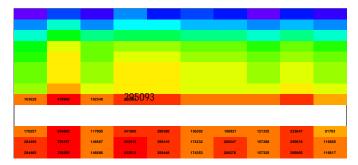
May 28, 2013

Large Extra Dimensions

Squark/Gluino + Gravitino

WIMP

Main Background



The ATLAS detector

- Partons hadronize to produce steams of columnated particles called \jets''
- Jets deposit their energy in the EM and hadronic calorimeters
- Noninteracting particles escape the detector leaving a momentum imbalance in the plane transverses to the beam line (E_T^{miss}).

Baseline selection

205293

- **1** Trigger: E_T^{miss} (online) threshold > 80 GeV (4-9% events pass cut)
- Vertex cut: at least one vertex with at least two tracks (99.9%)
- **3** Jet cleaning: reject events with poorly reconstructed/mismeasured jets (83%)
- 4 Lepton Veto: reject events with electrons or muons (96%)

- **5** MET cut: E_T^{miss} (o ine) > 120 GeV (4.5%)
- **6** Lead jet cut: jet $p_T > 120$ GeV and central (64%)
- Lead jet cleaning: additional quality cuts to reject non-collision bkg (95%)
- B Third jet veto: reject events with more than 2 jets (53%)
- **9** Delta phi cut: reject event where E_T^{miss} is aligned with second jet to reduce fake E_T^{miss} (64%)
- **10** SR2: $E_T^{miss} > 220$ AND jet $p_T > 220$ GeV (8%)
- **11** SR3: $E_T^{miss} > 350$ AND jet $p_T > 350$ GeV (10%)
- **12** SR4: E_T^{miss} > 500 AND jet p_T > 500 GeV (10%)

Backgrounds

- Z ! + jet(s)
 - Irreducible
 - Data-driven estimate
 - Dominant background: 70% (SR3)
- W(I) = Z(II) + jet(s)
 - Lepton(s) not reconstructed/misidenti ed
 - Data-driven estimate
 - For W: 29%, Z: 0.16% (SR3)
- Multijet
 - mis-measured jet
 - Matrix method
 - fSR1, SR2, SR3, SR4 g = f1.9%, 0.78%, 0.00%, 0.00%g
- Diboson, tt single top
 - Monte Carlo estimate
 - Combined 1% (SR3)
- Non-Collision
 - Beam halo, cosmic muons
 - Data-driven estimate
 - fSR1, SR2, SR3, SR4 g = f0.19%, 0.086%, 0.00%, 0.00%g

EW Background estimate

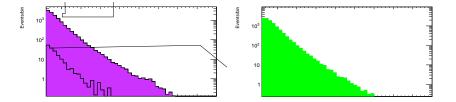
Main backgrounds come from W=Z + jet(s). A Data-driven method is used to estimate the backgrounds in the SR from a CR.

Data-driven estimate procedure

2 Remove background in CR: $(N_{CR}^{Data} = N_{CR}^{multijet})(1 = f_{EW})$

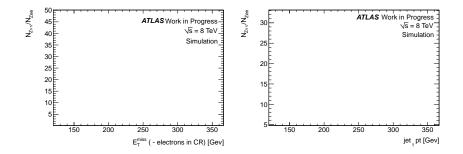
• where $f_{EW} = \frac{N^{CR:MC} (All EW channels except CR process)}{N^{CR:MC} (All EW channels)}$

3 Use transfer function (TF) to correct from lepton phase space to SR: $TF = \frac{N_{SR \ process}^{MC}}{N_{CR \ process}^{MC} SF}$


where SF is the product of \scale factors" that correct for trigger and lepton ID e ciencies

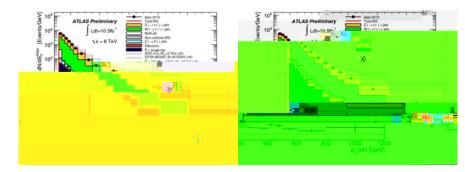
Master equation: $N_{SR}^{estimated} = (N_{CR}^{Data} N_{CR}^{multijet})(1 f_{EW})$ TF

There are four CRs that can be used to estimate SR backgrounds:

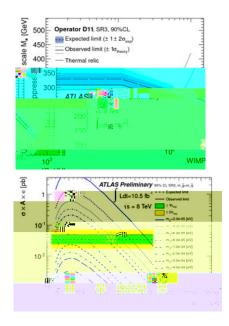

Se Exprocess		$W \rightarrow \tau \nu + \text{jets}$	The solution	$Z \rightarrow \tau^+ \tau^- + \text{jets}$
	$Z \rightarrow \nu \overline{\nu} + \text{jets}$	$W ightarrow \mu u + ext{jets}$	$W \rightarrow e\nu$ +jets	$Z ightarrow au^+ au^- + ext{jets}$ $Z ightarrow \mu^+ \mu^- + ext{jets}$
CR process	$W \rightarrow e\nu + \text{jets}$ $W \rightarrow \mu\nu + \text{jets}$ $Z \rightarrow e^+e^- + \text{jets}$ $Z \rightarrow \mu^+e^- + \text{jets}$	$W ightarrow \mu u + ext{jets}$		$Z ightarrow \mu^+ \mu^- + ext{jets}$

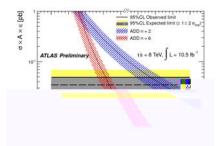
- $N_{CR \ process}^{MC}$ is found with SR selection on E_T^{miss} after lepton(s) are removed.
- Currently working on Z ! ee + jet(s) CR for SR Z ! + jet(s) background estimate

- Trigger : lowest unprescaled two-electron trigger
- Good Electrons: Inverted electron veto, $p_T > 25 GeV$
- e-jet overlap removal: remove closest jet within the vicinity of a good electron (R > 0.5)
- **Z** mass: invariant mass cut $66GeV < M_{ee} < 116GeV$


Transfer Functions

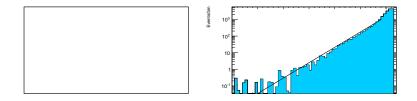
• $E_T^{CR} = E_T^{miss}$ electrons

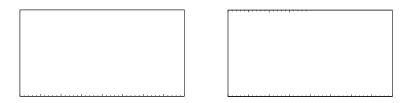

- Transfer functions applied to each bin
- Higher stat. samples needed for full SRs


HCP results (ATLAS-COM-CONF-2012-190)

- Dashed lines indicate prediction from respective theory interpretations
- No excess above Standard Model observed
- Limits on interpretations set.

HCP Limits (ATLAS-COM-CONF-2012-190)

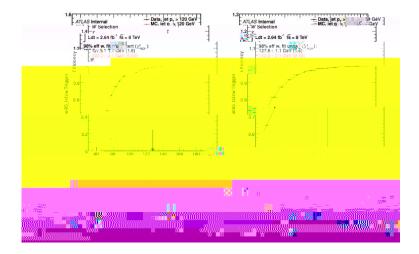




- Sensitivity limited by background MC statistics in SR3
- For full dataset analysis we expect a signi cant increase in sensitivity with new Sherpa samples

Backup slides

Auxiliary Zee distributions


Proposed blinding strategy is de ned by 3 phases:

Blinding procedure

- **1** Blinding: Look in SR1 (E_T^{miss} ; $p_T^{jet} > 120$) only, with the subset of events de ned by EventNumber%N==0
- Partial unblinding: Look in all SRs, but only with the same subset of events (EventNumber%N==0)
- 3 Full unblinding: Look at all data

Where N is chosen such that we are insensitive to signals beyond the HCP SR3 limits. Using HCP results N=12.

Tigger e ciency curves (ATLAS-COM-CONF-2012-190)

