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1 Preliminaries

1.1 Sets

Solutions:

1. Hint : Prove that A � B and B � A.

2. (a) P(A [ B) = f; ; f 1g; f 2g; f 3g; f xg; f yg; f 1; 2g; f 1; 3g; f 1; xg; f 1; yg; f 2; 3g;

f 2; xg; f 2; yg; f 3; xg; f 3; yg; f x; yg; f 1; 2; 3g; f 1; 2; xg; f 1; 2; yg; f 1; 3; xg; f 1; 3;

yg; f 1; x; yg; f 2; 3; xg; f 2; 3; yg; f 2; x; yg; f 3; x; yg; f 1; 2; 3; xg; f 1; 2; 3; yg; f 2; 3;

x; yg; f 1; 3; x; yg; f 1; 2; x; yg; A [ Bg.

(b) P(B � C) = f; ; 212f 2 �.9552 gsv9T9552 Tf 5.977 0 Td9Tf 84f 20.964 0 Td0 Td [(2)]TJ/F26 11(=)]TJ/F29 11TJ/F29 11.9552 Tf 5.244 0 Td [(f)]TJ/F22 11.9552 Tf 5.977 0 Td [(2)]TJ/F26 11.9552 Tf 5.853 0�

f

(b) P �and�2 B Td0 Td [5.853 0 T-306(=)]TJ/F29 11TJ52 gsu9T9552 Tf 5.977 0 Td95.90Tf 25.938 0 Td





1.2 Relations and Graphs

Solutions:

1. (a) Symmetric.

(b) Reexive, symmetric.

(c) Reexive, transitive, antisymmetric.

(d) Reexive, transitive, antisymmetric.

2. (a) The equivalence class ofz = 11 is [11] since 11 is prime. The other positive

integers in [11] are the positive integers whose largest prime divisor is 11.

The number of equivalence classes is equal to the cardinality of all the

prime numbers, which is in�nite.

(b) The equivalence class ofz = (2 ; 5) is [29]. This equivalence class includes

all ordered pairs of real numbers such thatx2
1 + x2

2 = 29.

There are in�nitely many equivalence classes ofR, one for each positive

real number that can be written as the sum of the squares of two real

numbers.
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3. (a)

1

23

4

5 6







(b) m � n edges.

3. 16 edges.

4. (a) Does not exist.

(b) Does not exist.

(c) Does not exist.

(d) One possible graph:



7. One possible graph:

8. Three.

9. Four.

10. Hint : Euler's Theorem.

11. No.

Hint : Cases.

12. Yes. This answer does not change if we require non-empty edges sets.

13. d 2 f 1; 2; 3; 5g:
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14. (a)

(b) Does not exist.

(c) Does not exist.

15. 2
n ( n � 1)

2 .

16. 23 vertices.

17. Hint : Euler's Theorem.

18. n � 1.

19. One possible graph:

9



20. Impossible.

21. Yes.

22. Hint : Consider all possible degrees of an arbitrary vertex.

23. Hint : Proof by contradiction.
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2.3 Isomorphisms

Solutions:

1. Two isomorphic graphs have the same structure.

2. The converse of this statement: \If two graphsG1 and G2 have the same num-

ber of vertices, same number of edges, and the same degree sequence, then they



(c)

12







f �! s

g �! t

h �! u

7.

111

011 001

101

110

010 000



(d) Isomorphic.

(e) Non-isomorphic.

10. Hint : There are exactly ten self-complementary graphs of order 8.
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2.4 Eulerian Circuits

Solutions:

1. An Eulerian circuit is a trail that uses every edge exactly once and ends where

it began. A Eulerian trail is a trail that goes through every edge, but does not

necessarily end where it began.

2. (a) No Eulerian circuit nor Eulerian trail.

(b) No Eulerian circuit exists but there exists an Eulerian trail.

(c) Both Eulerian circuit and Eulerian trail.

(d) No Eulerian circuit nor Eulerian trail.

(e) No Eulerian circuit nor Eulerian trail.

(f) No Eulerian circuit nor Eulerian trail.

3. Not Eulerian.

4. Hint : Recall the K•onigsberg Bridge Problem: The city of K•onigsberg, Prussia,

was set on both sides of a river and included two large islands, all connected

by seven bridges. Is there a way to walk through the city crossing every bridge

exactly once while �nishing where you started?

5. Hint : By de�nition, every path is also a walk.

6. One possible graph:

17



7. (a) False.

(b) True.

(c) False.

(d) True.

8. m; n both non-zero, even integers.

9. No.

10. (a) n odd.

(b) For all odd values ofn there will be aclosedEulerian trail (i.e. an Eulerian

circuit). The only open Eulerian trail occurs whenn = 2.

11. True.

18



Hint : Consider an arbitrary circuit.

12. Hint : Show the three properties of an equivalence relation hold.

13. Hint : Consider two arbitrary vertices in opposite components of a disconnected

G.

14. Hint : Proof by contradiction.

15. jE(G)j � n � 1.

16. Hint : In any circuit, there exist two trails between any given pair of vertices.

19



2.5 Hamiltonian Cycles

Solutions:

1. (a) In a Eulerian circuit it is possible to pass through some vertices multiple

times while that is not possible in a Hamiltonian cycle. Also, a Hamil-

tonian cycle may not visit every edge while that is a requirement of a

Eulerian circuit.

(b) A Eulerian trail may visit the same vertex multiple times while a Hamil-

tonian path will not. A Hamiltonian path may not visit every edge in the

graph, while that is a requirement of Eulerian trail.

2. (a) Not Hamiltonian.

(b) The Hamiltonian cycle is highlighted in red.

(c) One such cycle is highlighted in red.

20



(d) Not Hamiltonian.

(e) Not Hamiltonian.

(f) Not Hamiltonian.

(g) Yes, a Hamiltonian cycle is highlighted in red:

3. The following graph is a su�cient counterexample:

21





10. Hint : Consider an arbitrary cycle.

11. Hint : Proof by contradiction.

12. The Petersen graph is such a graph:

13. Here are the only such graphs, with Hamiltonian cycles highlighted in red.

23



14. Highlighted below is one of several Hamiltonian cycles in red:
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2.6 Trees and Their Properties

Solutions:

1. In�nitely many possible degree sequences exist. If you can draw a tree with

your degree sequence then it is correct.

2. The following are equivalent:

i) G is a tree.

ii) G is a connected acyclic graph.

iii) G is a connected graph withn � 1 edges.

iv) G is an acyclic graph withn � 1 edges.

3.1 ed[(1)-3o6(an)-32our tree.



(b)

(c)

5. Yes.
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6. False.

7. Nine vertices.

8. x = 5.

9. Hint : Induction on the number of vertices.

10. 102 vertices.

11. There are two vertices of degree 5.

12. Hint : Use the alternate de�nitions of a tree.

The components of this new graph are trees.

13. Hint : Consider a property shared by trees and bipartite graphs.

14. Hint : Euler's Theorem.

15. A tree,T, is a complete bipartite graph if and only ifT = K 1;n for some positive

integer n.

16. jE(G)j = n � c.
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17. There are many possible graphs satisfying these properties. If your graph is

disconnected or has a cycle then it is not a tree.

18. (a) Does not exist.

(b) Does not exist.

(c) One such tree:

(d) Does not exist.

19. (a) There is no such spanning tree.

(b) The subgraph induced by verticesb; e; f; g is one such induced 4-cycle.
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2.7 Planar Graphs

Solutions:

1. A graph is `planar' if it can be drawn in the plane so that no edges cross.

2. Two graphs are homeomorphic if one is a `subdivision' of the other.

3. (a) This graph is nonplanar as it is homeomorphic toK 3;3.

(b) This graph is planar.

(c) This graph is planar.

29





9. Hint : Draw P2.

10. Hint : Use Euler's Theorem and Euler's Planar Graph Theorem.

11. Hint : Euler's Planar Graph Theorem.

12. (a) False.

(b) True.

(c) True.

(d) True.

13. (a) Such a graph does exist and has exactly 8 regions.

(b) Such a graph does exist and has exactly 9 edges.

(c) There is no such planar graph.

(d) There is no such planar graph.

14. Does not exist.

15. Hint : How many edges do these two regions share?
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2.8 Colouring Graphs

Solutions:

1. Assigning every vertex of a graph a colour such that no adjacent vertices have

the same colour.

2. The graph is edge-less/empty.

3. (a) � (K n ) = n.

(b) � (K m;n ) = 2.

(c) � (G) = 2 :

(d) � (G) = 2 :

(e) � (G) = 3.

(f) � (G) = 2 :

(g) � (G) = 4.

(h) � (G) = 2.

(i) � (G) = 4.

4. False.

5. (a) False.

(b) False.

(c) True.

(d) False.

(e) False.

(f) True.
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(g) False.

(h) False.

(i) False.

(j) True.

(k) False.

6. (a)



7. (a) Every animal represents a vertex. Two vertices are adjacent (i.e. there

is an edge) if these animalscannot live together peacefully. The vertices

assigned the same colour represent the animals that can live in the same

enclosure. The zoo is attempting to �nd the chromatic number of such a

graph.

(b) Let each course be a vertex, with two vertices adjacent if a student in-

dicates that they would like to enroll in both courses. Vertices assigned

the same colour represent courses that can run at the same time. Any

colouring of this graph will give the department such a schedule, however



3 Counting: Fundamental Topics

3.1 Basic Counting Principles

3.2 The Rules of Sum and Product

Solutions:

1. (a) The sum rule for multiple events is for events that areindependent (i.e.

events/situations that cannot occur at the same time). If one event can

occurm ways, and the other event can occur inn ways, where both events

are independent, then the two events together can occur inm + n ways.

(b) The product rule for multiple events is for events that are happening in

sequence of one another, thus arenot independent. For example, if one

event can occur inm ways and then another event follows and can occur

in n ways, then the sequence of these two events can occur inmn ways.

2. The product and sum rule are used together when a set of sequences of events

are occurring independently.

3. (a) Rule of product.

366.

(b) Rule of product.

35 880 000.

(c) Rule of product and rule of sum.

25 309 440.
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(d) Rule of product and rule of sum.

1 021 798 336.

(e) Rule of product and sum.

6 718 464.

4. Rule of sum.

58.

5. Rule of sum and product.

231.

6. Rule of product.

36.

7. Rule of product.

22.

8. (a) Rule of product.

5 � 9 � 104.
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(b) Rule of product.

5 � 94.

(c) Rule of product.

62 784.

9. Rule of product.

1 536.

10. Rule of product.

5 � 9 � 10.

11. Rule of product.

456 976.

12. Rule of product.

(a) nm � 1 � 1.

(b) nm � 2 � n � 1.

(c) 3 � nm � 1.

(d) n � n � 1m � 1.

(e) nm � 1 � n � 1.
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13. Rule of product.

35.

14. Rule of product.

225.

15. Rule of product and sum.

1 550.

16. Rule of product.

60.

17. Rule of product.

Lock 1 has a higher number of possible combinations and hence is the lock

Jamie should purchase.

18. Rule of sum and product.

18 278.
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3.3 Permutations

Solutions:

1. A permutation is a linearly ordered arrangement of distinct objects.

2. If objects could be repeated, two identical arrangements would be counted as

di�erent.

3. (a) 120.

(b) 60.

(c) 510.

4. 20.

5. (a) 5 040.

(b) 1 440.

6. (a) 6 375 600.

(b) 2 772.

7. 30 240.

8. 1 440.

9. 27 907 200.
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10. 100.

11. (a) 3 315 312 000.

(b) 892 584 000.

(c) 127 512 000.

(d) 1 356 727 680.

12. m!(n + 1)! :

13. Applying the de�nition,

P(n; n) =
n!

(n � n)!
=

n!
0!

=
n!
1

= n!

14. The permutation function is one speci�c application of the product rule if you

are trying to determine the number of possible arrangements ofk out of n dis-

tinct objects (k � n). If this is not the speci�c case, count using the Rule of

Product.

15. Solve your own problem to verify this.

16. Hint : Use the de�nition of the permutation function.

17. 5 184.

18. 34 650.
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(b)
� 10

5

�� 2
1

�
.

7.
� 10

3

�
�

� 8
1

�
=

� 9
2

�
+

� 9
2

�
+

� 8
3

�
.

8.
� 15

7

�
�

� 12
5

�
=

� 2
1

�� 13
6

�
+

� 13
7

�
+

� 12
4

�
.

9. (a)
� 20

8

�
.

(b)
� 10

4

�� 10
4

�
.

(c)
� 20

8

�
�

� 18
6

�
=

� 18
8

�
+

� 2
1

�� 18
7

�
.

(d)
� 20

8

�� 8
1

�
=

� 20
1

�� 19
7

�
.

10. Algebraic:

m
�

n
m

�
= n

�
n � 1
m � 1

�

m(n!)
(n � m)!m





equivalent.

13. (a)
P n

k=0 xkyn � k
� n

k

�
.

(b)
P 6

k=0 (3)k(� x)6� k
� 6

k

�
= x6 � 18x5 + 135x4 � 549x3 + 1215x2 � 1458x + 729.

(c)
P 7

k=0 (2x)k(� 3y)7� k
� 7

k

�
= 128



(b) 23n .

(c) (� 1)n .

(d) 6 � 2n .

(e) 0.

19. When evaluating a polynomial with more than two terms to some integer power

the multinomial theorem is used to determine the coe�cients of the terms. The

binomial theorem is a version of the multinomial theorem that can be used for

binomials.

20. (a) 12.

(b) 816 480.

(c) There is no term with xyz.
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3.5 Combinations with Repetitions

Solutions:

1. i ) The number of waysr identical elements can be distrbuted inton distinct

containers.

ii ) The number of non-negative integer solutions to:

x1 + x2 + ::: + xn = r:

2. We are selectingr elements, with possible repetition, from a set ofn distinct

objects.

3. 330.

4. 41 120 525.

5. (a)
� 40

12

�
.

(b)
� 51

12

�
.

6. (a)
� 20+ m� 1

20

�
.

(b) m20:

7. 1 680.

8. There are many possible correct answers, one example is, in how many can you

distribute ten treats between three dogs?
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9. 42 504.

10. 56.

11. 2 925.

12. 26 334.

13. 126.

14. n = 7:

15. n = 7.

16. Algebraically : Expanding using the de�nition of the combination function,

we know,

� n+ r � 1
r

�
= (n+ r � 1)!

r !(n� 1)! ,

and that,

� n+ r � 1
n� 1

�
= (n+ r � 1)!

(n� 1)!r ! .

It is easy to see that these expansions are equal since multiplication is commu-

tative, so we're done.

Combinatorial proof : We can look at this problem as placingr balls into n

boxes.

If we wish to do this, we can line up ther balls and placen � 1 dividers between
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them. The balls between either the beginning/end and a divider or two dividers

represents the number of balls in a box. Thus, there aren� 1+ r total positions,

where each position is either �lled with a ball or a divider.

From these positions we can either choose where to �rst place the dividers and

then have the balls �ll the remaining positions,
� n+ r � 1

n� 1

�
, or we can choose where

to place the balls �rst and have the dividers �ll the remaining positions,
� n+ r � 1

r

�
.

The two options are equivalent and are equal to the right and left sides of the

equation, respectively.

17. (a) P(n; r )

(b) C(n; r )

(c) nr

(d) C(n + r � 1; r ) = C(n + r � 1; n � 1)

18. 136.

19.



(c)

x1 + x2 + x3 + x4 = 12;

wherex i � 2 for i = 1; 2; 3; 4. Eachx i represents the number of apples of

each variety that have been selected.

(d)

x1 + x2 + x3 + x4 = 15;

wherex i � 0 for i = 1; 2; 3; 4 with x1 = x2. Each x i represents the amount

of markers in each box.

20.
� n� m+ x� 1

x

�
�

� n
m

�
.

21.
� m+ s� 1

s

�
�

� n+ r � s� 1
r � s

�
.
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3.6 The Pigeonhole Principle

Solutions:

1. If there arek pigeons that are ying into n pigeonholes wheren < k , then there

must be at least one box with at least two pigeons.

2. A function from one �nite set to a smaller �nite set cannot be one-to-one. There



The pigeons are the di�erent integers and the pigeonholes represent the

possible remainders upon division by 28.

(c) You must take out at least 10 shoes before you are guaranteed to obtain a

pair. Any less and it is possible that each shoe is from a di�erent pair.

The pigeons are the shows and the pigeonholes are the pairs of shoes.

(d) To determine this, we must �rst count the number of distinct three letter

words. For each position in the word there are 26 possible letters. There-

fore, in total there are 263 = 17 576 distinct three letter words. This means

that it is possible, but not de�nitive, that all words on this list are distinct

as there are more three-letter words possible than there are words on the

list.

The pigeons are the number of three-letter words and the pigeonholes are

the words on the list.

6. Hint : Prove the statement about subsets of size 6, the result will follow for all

larger subsets.

7. (a) Any even positive integer can be written asx = 2 ky (essentially just fac-

toring out the two's), where k 2 N, and y is odd. There are exactly 1000

odd numbers inA = f 1; :::; 2000g.

Let us de�ne a pigeonhole for each odd integery 2 A as:

PHy = f x 2 A : x = 2 ky; wherey is odd andk � 0g.

This gives us our 1000 pigeonholes.

Select any 1001 numbers fromA, these are the pigeons. Then, by the

pigeonhole principle, there exists a pigeonhole,PHy, that contains two
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selected numbers:a and b. Say a = 2 ky and b = 2 py for some distinct,

nonnegative integersk and p. If k > p , then b



Note: Recognizing that you need to do this is the heart of the proof. We add

23 because we are trying to prove that there are 23 consecutive days where

scholarship applications were sent out, which allows us to conclude this by the

PHP.

Now we have 84 distinct numbers,f x1; x2; :::; x42; x1 + 23; x2 + 23; :::; x42 + 23g.

Let these numbers represent out `pigeons'. These 84 numbers must all lie be-

tween 1 and 83, where the range of integers from 1 to 83 represent out pigeon-

holes. Thus by the PHP there exists anx i = x j +23 for somei > j 2 f 1; :::; 42g.

This means that from the beginning of dayj + 1 to the end of day i , Brynn

applied for 23 scholarships.

10. It su�ces to prove the result for subsets of exactly size three, since that will

imply the result for subsets of size larger than three.

The only way for the sum of two integers to be even is if both of the integers

have the same parity, that is both are even or both are odd. Any given integer

can be classi�ed as either even or odd, hence any subset of 3 integers will con-

tain at least two with the same parity by the PHP. Thus, there are two integers

in the subset with an even sum.

11. There are 12 pigeonholes (computers) and 42 pigeons. In this problem there is

a restriction that no pigeonhole can hold more than 6 pigeons.

We wish to show that there are �ve computers which are used by three or more

people.

Let us assume for a contradiction that this is not true. This would mean that

8 computers are used by at most 2 people. This would mean that these 8

computers are used by at most 16 people all together.

There are 42 people who use a computer at the library and so that means the
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remaining 26 people use 4 computers.

This means that there are 26 pigeons and 5 pigeon holes where the maximum

capacity of each pigeonhole is 6. This however gives that the maximum capacity

for the remaining computers is 24, which is a contradiction.

So, at least 5 computers are to be used by three or more people.

12. Let us assume that if one person speaks to another, the person will respond.

That is, assume speaking to someone is a reective relation.

If there are n people at the party, each person can speak to between 0 and

n � 1 people, as no person can speak to themselves and speaking to someone is

reective.

If a person spoke ton � 1 people, then it is impossible for any person to have

spoken to 0 people. In this case every person spoke to between 1 andn � 1

people. That means there aren � 1 potential number of people a person could

have spoken to.

If a person at the party spoke to 0 people, then it is impossible for someone to

have spoken to everyone. In this case every person will have spoken to between

0 and n � 2 people. That means there aren � 1 potential number of people a

person could have spoken to.

In both of the above cases, there aren � 1 potential amounts of people a person

could have spoken to butn people. Thus, by the PHP two people will have

spoken to the same amount of people at the party.

13. For 12 to divide the di�erence of two numbers, they must have the same re-

mainder upon division by 12. Observe that 12k + m � (12j + m) = 12( k � j ),
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4 Inclusion and Exclusion

4.1 The Principle of Inclusion-Exclusion

Solutions:

1. The Principle of Inclusion-Exclusion is a counting method that ensures ev-

ery possible event is counted, while also taking into account events that can

co-occur. This method is a way of ensuring events are not counted twice or

\double counted".

2. False.

3. (a) 16.

(b) 27.

(c) 20.

4. 300.

5. (a) 46.

(b) 35.

6. (a) There is no correct answer - the question is unanswerable because the

situation described is impossible.

(b) 0.

(c) 135.

7. 11!�
P 6

i =1 (� 2)i
� 6

i

�
(11 � i )!
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9. (a) [d(12)]2.

(b) [d(6)]2.

(c)
P 12

k=0 (� 1)k [(12 � k)!]2
� 12

k

�
.

Hint : Use PIE instead of derangements.

10. We will count the number of permutations of the numbers 1; 2; 3; :::; n, which

is certainly n!. Alternatively, for every possible permutation we can consider

how there arek elements that have been deranged, and hencen � k elements

in their original positions for 0 � k � n. The n � k �xed elements can be

selected in
� n

n� k

�
=

� n
k

�
ways, with d(k) ways that the k remaining elements

can be deranged. We sum these cases fromk = 0 to k = n to account for all

possible permutations, and the proof is complete since we've counted the same

situation in two di�erent ways.
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4.3 Onto Functions and Stirling Numbers of the Second Kind

Solutions:

Note: There are two equivalent formulas for Stirling numbers:

S(m; n) =
1
n!

n� 1X

k=0

(� 1)k

�
n
k

�
(n� k)m =

1
n!

nX

k=0

(� 1)k

�
n
k

�
(n� k)m

These formulas are equivalent as:

1
n!

nX

k=0

(� 1)k

�
n
k

�
(n � k)m =

1
n!

n� 1X

k=0

(� 1)k

�
n
k

�
(n � k)m + ( � 1)n

�
n
n

�
(n � n)m

=
1
n!

n� 1X

k=0

(� 1)k

�
n
k

�
(n � k)m + 0

=
1
n!

n� 1X

k=0

(� 1)k

�
n
k

�
(n � k)m

Thus, you may use either in your solutions.

1. An onto function is a function f : A �! B where for all b 2 B, there exists

somea 2 A such that f (a) = b.

2. The number of ways to distributen di�erent objects into m distinct containers

where no container is left empty andn � m.

3. There are many possible examples, one example is the functiony = x where

x 2



5. No such surjective function.

6.
P 8

k=0 (� 1)k
� 9

k

�
(9 � k)13.

7. 2.

8.
P 6

k=0 (� 1)k
� 7

7� k

�
(7 � k)27.

9. 2 100.

Hint : Two cases.

10. A Stirling number of the second kind, denotedS(m; n), is the number of ways

to distribute m distinct objects into n identical containers with no container

left empty.

The formula is: S(m; n) = 1
n!

P n� 1
k=0 (� 1)k

� n
n� k

�
(n � l)m . This is the formula

for counting the number of onto functions from a set of sizem to a set of sizen

divided by n!. The division by n! is done to account for the identical \container".

11. j ! � S(k; j ).

12. (a) 5 103 000.

(b) 1 020 600.

Hint : Cases depending on if any other stu�ed animals go into the �rst bin.

62



(c) 86 472.

Hint : Six cases.

13. We recall from number theory that any factor of 55 335 will be the product of

some subset of the factors of 55 335. For example. 3� 5 and 31� 3 � 17 are both

factors of 55 335.

(a) S(5; 2) = 15.

(b)
P 5

n=2 S(5; n) = 51.

Hint : Four cases.

14. Hint : Expand the sums.
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5 Generating Functions

5.1 Introductory Examples

5.2 De�nition and Examples: Calculating Techniques

Solutions:

1. (a) 1 + 2x + 3x2 + 4x3 + ::: + nxn+1 + ::: =
P 1

k=0

� k+1
1

�
xk = 1

(1� x)2

(b) 5 + 4x + 3x2 =
P 2

k=0

� 5� k
1

�
xk :

(c) 1 � x + x2 � x3 + x4 � x5 + ::: + ( � 1)nxn + ::: =
P 1

k=0 (� x)k = 1
1+ x :

(d)
� 10

10

�
+

� 11
10

�
x +

� 12
10

�
x2 + ::: =

P 1
k=0 xk

� 10+ k
10

�
= 1

(1� x)11

(e)
� 10

10

�
�

� 11
10

�
x +

� 12
10

�
x2 �

� 13
10

�
::: =

P 1
k=0 (� x)k

� 10+ k
10

�
= 1

(1+ x)11

(f) 1 + x2 + x4 + ::: =
P 1

k=0 x2k = 1
1� x2

(g) 1 � 2x + 4x2 � 8x3 + 16x4 � 32x5 =
P 5

k=0 (� 2x)k = 1� (� 2x)6

1� (� 2x) = 1� 64x6

1+2 x

2. (a) 0; 0; 0; ::::

(b) 0; 1; 0; 0; 0:::

(c) 4; 3; � 10; 55:

(d) � 64; 144; � 108; 27.

(e) 0; 3; 3; 3; 3; ::::

(f) 1; 6; 27; 108; :::

3. (a) 1.

64





(b)

g(x) =
(1 � x6)(1 � x3)
(1 � x)2(1 � x2)2

:

(c)

g(x) = x10 1
(1 � x)4

:

(d)

g(x) =
1

(1 � x2)(1 � x3)2(1 � x)
:

12. The coe�cient of x50 in,

g(x) =
1

1 � x
�

1
1 � x5

�
1

1 � x10
�

1
1 � x25

:

13. (a) 8.

(b) 90.

14. (a)

g(x) = (1 + x + x2 + x3 + :::)3:

(b)

g(x) = x3(1 + x + x2 + x3 + :::)3:

15. 6.
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6.

g(x) = (1 + x + x2 + :::)5

.

7. (a)

g(x) = xk
kY

i



8. Hint : Find the two generating functions and explain why they're equal.

9. Hint : Compare the relevant generating functions.

10. Hint : Find a one-to-one correspondence between any partitioning ofn and any

partitioning of 2n into n parts.

11. Hint : Find a one-to-one correspondence between the two sets.
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6 Recurrence Relations

6.1 First-Order Linear Recurrence Relations

Solutions:

1. A recurrence relation is an expression for a functionf (n) that is de�ned in

terms of previous terms, such asf (n � 1), with one or more initial values for

f (k) stated.

2. Solving a recurrence relation means determining a function, whose domain is

the set of non-negative integers, that describes the recurrence relation for all

n � 0 without solving for previous terms.

3. a6 = � 262:

4. an = 5 � (� 2)n , for n � 0.

5. an = 909( 1
3)n , for n � 0:

6. an = k � ( � 6
5 )n .

7. an = 1296
2401( 7

2)n .

8. $1668:25.

9. bn = 25 � 3n , for n � 0.

70



Hint : Make the substitution bn = a2
n .

10. (a) a0 = 0, and an+1 = an + 2n, for n � 1.

(b) a0 = 7, and an+1 = 2�an
5 , for n � 1.

11. d = 2
7 .

12. 5� (336):

13. (a) an = ( � 5)n , n � 0.

(b) an = (4) n� 1, n � 1:
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an = ( � 1 �
412

2
p

5423
)(

74�
p

5423
53

)n + (
413

2
p

5423
� 1)(

74 +
p

5423
53

)n for n � 0:

5. 3an = 5an� 1 � 11an� 2 for n � 2. The initial conditions are a0 = a; a1 = b for

any



(b) un = 2un� 2 + un� 1, whereu0 = 1.
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