Turbo Pumps

June 14, 2010 Albert Santoni

Outline

Background
Vacuum Pumps
Turbo Pump Design
Importance

Background: Pressure

Gas molecules are in constant random motion

In a container, the collisions of the gas molecules with the walls are what we measure as pressure (force/area)

Vacuum: Absence of gas (no pressure!)

Viscous flow with no vacuum

Collisions between molecules become rare at high vacuum

Vacuum Pumps

Removes gas from a chamber to create a vacuum

Useful when you interactions with gas must be minimized (eg. Electron beams)

Turbo Molecular Pumps

Momentum Transfer

Titled rotor blades spin at up to 90,000 RPM

Gas molecules pass through the blades and pick up momentum when struck by the back of the blades

Some gas molecules more likely than others to make it throughD ^o-MAÄ M@ there(b)-3(a)-1(a)-1(k)-4ftInd stlin

Typical Setup

Turbo Pump Characteristics

Pumping Rates

20 L/s to 3,000 L/s

Different gases pump at different rates

Compression Ratio

Ratio between the partial pressure of a specific gas in the foreline vs. chamber (ie. after/before turbo)

eg. If CR=10⁸ for Nitrogen and P_{foreline} = 10⁻¹

Other Characteristics

Rotor design (SNECMA vs. Pfeiffer) Bearings

Ceramic, lubricated

- Lubricant with low vapour pressure at UHV Magnetic, levitating
 - Rotor shaft levitates without mechanical contact
 - No oil backflow, no mechanical wear!

Throughput, Vacuum, Backpressure

SNECMA Design

Pfeiffer Design

Practical Importance

Turbopumps are an essential part of nanotechnology

Science: SEM, EBL, FIB, LEED, XPS, thin film deposition

Engineering: Semiconductor fabrication, ion implantation, [your research here?]

Advantages: Reliable, good performance, corrosion resistant, fast(!), clean

If one breaks on you, you'll have to know how to find a replacement.

Questions?

References

- 1. Rotary Vane animation from Pumpschool.com: http://www.pumpschool.com/principles/vane_ani.htm
- 2. Lesker Vacuum Notes http://www.repairfaq.org/sam/vacuum/tmpnotes.htm
- 3. A user's guide to vacuum technology John F. O'Hanlon, 2003, Wiley-Interscience